7425 Decimal in Binary

Let's convert the decimal number 7425 to binary without using a calculator:

Step 1: Divide by 2

Start by dividing 7425 by 2:

7425 ÷ 2 = 3712 (Quotient) with a remainder of 1

Step 2: Divide the Quotient

Now, divide the quotient (3712) by 2:

3712 ÷ 2 = 1856 (Quotient) with a remainder of 0

Step 3: Divide the Quotient

Now, divide the quotient (1856) by 2:

1856 ÷ 2 = 928 (Quotient) with a remainder of 0

Step 4: Divide the Quotient

Now, divide the quotient (928) by 2:

928 ÷ 2 = 464 (Quotient) with a remainder of 0

Step 5: Divide the Quotient

Now, divide the quotient (464) by 2:

464 ÷ 2 = 232 (Quotient) with a remainder of 0

Step 6: Divide the Quotient

Now, divide the quotient (232) by 2:

232 ÷ 2 = 116 (Quotient) with a remainder of 0

Step 7: Divide the Quotient

Now, divide the quotient (116) by 2:

116 ÷ 2 = 58 (Quotient) with a remainder of 0

Step 8: Divide the Quotient

Now, divide the quotient (58) by 2:

58 ÷ 2 = 29 (Quotient) with a remainder of 0

Step 9: Divide the Quotient

Now, divide the quotient (29) by 2:

29 ÷ 2 = 14 (Quotient) with a remainder of 1

Step 10: Divide the Quotient

Now, divide the quotient (14) by 2:

14 ÷ 2 = 7 (Quotient) with a remainder of 0

Step 11: Divide the Quotient

Now, divide the quotient (7) by 2:

7 ÷ 2 = 3 (Quotient) with a remainder of 1

Step 12: Divide the Quotient

Now, divide the quotient (3) by 2:

3 ÷ 2 = 1 (Quotient) with a remainder of 1

Step 13: Final actions

The Quotient is less than 2 (1), so we will transfer it to the beginning of the number as a reminder.

Step 14: Write the Remainders in Reverse Order

Now, write down the remainders obtained in reverse order:

1110100000001

So, the binary representation of the decimal number 7425 is 1110100000001.
Decimal To Binary Converter



Other examples of Decimal to Binary conversion
See also: